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AN ATTEMPT TO DETERMINE THE TWENTY-SEVEN
LINES UPON A SURFACE OF THE THIRD ORDER,
AND TO DIVIDE SUCH SURFACES INTO SPECIES
IN REFERENCE TO THE REALITY OF THE LINES
UPON THE SURFACE.

By DR. SCHLAFLI, Professor of Mathematics at the University of Bern.
Translated by A. CAYLEY.

PRELIMINARY remarks. Contrary to the usual practice I

would, in the case of a curve, term singular those points
only at which Taylor's theorem fails for point coordinates,
anc{ where in consequence the tangent ceases to be linearly
determined ; and in like manner term singular those tangents
for which the point of contact ceases to be linearly geter-
mined. Thus a point of inflexion is not a singular point,
but the tangent at such point is a singular tangent. Accord-
ing to the same principle, in the case of a surface, I call
singular points those only for which the tangent plane ceases
to be linearly determined. I say further that a surface is
general as regards order when it has no singular points,
general as regards class when it has no singular tangent
planes. By class 1 understand the number of tangent planes
which pass through an arbitrary line; by singuf:r tangent
planes, the tangent planes for which the point of contact
ceases to be linearly determined. By order of a curve in
space, I mean the number of points in which the curve is
intersected by an arbitrary plane, by class (as for surfaces)
the number of lamfent planes (planes containing a tangent
of the curve) which pass through an arbitrary point. On
account of their reciprocal relation to curves I guard myself
from putting developable surfaces on a footing with proper
curved surfaces, and call them therefore simply dcuelopazla
without the addition of the word surface, since they do not,
like proper surfaces, arise from the double motion of a plane
but arise from the simple motion of a plane. I call indeed
degree of a developable the number of points of intersection
with an arbitrary line, but class the number of generating
planes which pass through an arbitrary point. ’ﬁe repre-
sentation of an algebraical curve in space requires at least
two equations, that is, two surfaces passing through the curve.
If these surfaces cans‘m chosen so that their complete inter-
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section is merely the curve in question, such curve may be
termed a complete-curve (Vollcurve). But when this is not
possible, and the complete intersection of any two surfaces
passing through the curve consists always of such curve
accompanied by one or more other curves, the curve in
question is termed a partial-curve (Theilcurve).®

Suppose now that f(w, x, 7, 2z) =0 is the homogeneous
equation of an algebraical surface of the 2™ order ; w, z, y, = the
copr.dmates of a point P of the surface, which, as the surface
originally given, I will call for shortness the basis. More-

ove.r le‘t D= %-F @ ot y ;— +2 i_ represent a linear
derivation symbol, in which the elements ', =, 3/, ¢ denote
the coordinates of a point in space, which ma be designated
by the same letter 2): the derivation symbol may be called
for shortness the symbol of the point to which it relates.
The system f=0, Df=0 expresses that the point D is
situate in the tangent plane to the surface at the point D,
This plane cuts the basis in a curve (f=0, If=0, I'f=0)
which has the point of contact as a double point; I will
call the curve simply the contact section (Beriihrungschnitt).
Since P is an arbitrary point upon the surface, there are in
the contact section two disposable elements; when therefore
we add the condition that the curve has a second double point,
there remains but one disposable element; and if we assume
that there are three douh[; wints in all, the plane becomes
determinate. In other words, to a general (as regards order)
algebraical surface of an order higher than the second, there
bjongs a developable, the generating planes of which touch
the surface in two points. Among these generating planes
there are found a determinate number of planes tnuchin§ the
surface in three points. The developable may be termed the
doubly circumscribed develugable,‘]’ the planes the triple tan-

ent planes of the surface. 'The problem which next presents
itself is to determine the curve along which the surface is
touched by the doubly circumscribed developable.

* The names Volleurve and Theilcurve belong to Steiner.

T (Note by the Translator). This iv the developable which I have
called the node-couple developable; and further on, the osculation curve
is that frequently called the parabolic curve and which 1 have termed
the spinode curve; the osculating circumseribed developable is what 1
have termed the spinode developable, and the self-touching double points
what I have termed tacnodes. See my paper “ On the Bingularities of
Burfaces,” Cambridge and Dublin Mathematical Jowrnal, t. ViL. p. 166,
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*Suppose as before that (w, z, y, 2) are the coordinates
of a point P of the basis = 0 and moreover that (v, x', ¥y, 2'),
(w", 2", y", 2") are the coordinates of two points lying 1n the
corresponding tangent plane, I, D" their symbols in respect
of P, 8o that Df=0, D’f=0. If then v, X, @ are three
new variables, and ¥ P+ D' + oD denotes a point common
to the tangent plane and the basis (i.e. if Y + yw' + ww”,
Yz + xz' + wr’y &c. are the courdinates of the point in
question) then

F(¥y % 0)=3"" (xD' + oD")if + 33" (xD' + aD'}f...

1 e

t g D +el =0
is the equation of the contact section, where Y, X, @ are to
be considered as the coordinates of a point in a plane; F'is
a symbol for the polynome on the right-hand side considered
as a function of v, x, w, the coordinates of P, D, IV being
treated as constant. If then the curve besides the double
point £ (at which point x =0, @ =0) has another double point

@, then putting for shortness g’g:F\’” &c., the equations

Fy=0, Fy=0, F,=0 must be satisfied without x and @
vanishing. This gives an equation between the coordinates
in space of the points P, D, D", and (as might be expected
from the nature of the guestion) finally an equation contain-
ing only w, z, y, z, and which combined with the equation
J=0 represents the required curve of contact of the doubly
circumscribed developable. But since by reason of the double
point P the resultant of the polynomes Fy, F\, F, vanishes
identically, the system must be replaced by a system for
which this does not happen; to effect this we may proceed
as follows :
The functions Fy, F,, may be brought under the forms

Iy = My +No, F,= Py + Qu,
and the equations /=0, F, =0 give therefore
A=MQ—-NP=0
and the function A for y =0, @ = 0 reduces itself to
(DS (VL) = (DDL)} g,
* Remark., 'This section contains an attempt to apply Jacobi's

method, given in Crelle’s Journal, for the determination of the double
tangents of a plane curve, to the doubly circumscribed developable of

a surface.
YOL, I1. E®
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Moreover in the development of

G= 92 yFy - xFy—oF.= “”E"ﬁ VFy = nk,

n-— n

the lowest term in respect to x, @, is
= Ay o + D).
Considering now the resultant © of the system

Fﬁ,mﬂ, FIHO" Am(l,

this must be in the first place divisible by the resultant K
of the system :
Fy=0, M=0, N=0,
and in the next place by
r= (/) WS- DU,
since x=0, w=0, =0 are also a solution of the system .
But since we have identically
2 NyFy= NG+ (Ny+ Qo) Fx— 0xo
and since for ' =0 and considering x, @ a4 indefinitely small
quantities of the first order, the polynomes Fy, & are only
of the first order, but @ is of the third order, © must be
divisible by I*.* As regards K there is nothing to shew that
a higher power than the first enters as a factor into ©, and
a further examination shews that © is in fact divisible only
by the first power of K.

In relation to v, x, @ we have Fy, Fy each of the degree
n—-1, A of the degree 2(n-12) and Af, N of the degree
n-2. The coefficient of » term ‘! in Fy 18 in
regard to the coordinates of the points b D, IV respectively
of the degrees a+ 1, B, v, in Fy of the c‘l;gmes a, B+ 1,7,
in M of the degreen a, B+2, v, in of the degrees
@ B+1, y+1, in P the same, and in Q of the degrees

r gznu by the Translator). 1 do not c.,uila understand the reason-
ing: but if we write Fu Ax'+ 2Bxw+ Cu' and take I' the value of
AC-B* eo mding to x=0, w=0, then when x, w are small
dy 4, dyB, dy,C are proportional to 4, B, C, and the system (©) may
be written Ax'+2B8yw s Cu»0, Ax+ Bw=0, I's Ax+ Bw =0, the
lpst two equations shew that (putting for shortness AR, A B=T)
Tﬁ' Tw are respectively equal to- BT, + AV, and substituting these
‘values in the first equation, the left-hand side of the resulting equa-
tion contains the factor (AF* ~2BAB .+ CA") 1, which is equal o
A(AC- B*) 1%, Le, the resultant containg the factor 1",
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a, B, v + 2, conequently in A of the degreesa, 8+2, v+ 2.
Lastly, I' is in regard to such coordinates of the degrees
2(n—2),2, 2. It follows that in reference to the coordinates
of the three points respectively,
© in of the degrees

2n(n—1)(n—2), 2(n—=1)"+2(n—-1)(n-2), 2(n—1),
and K of the degrees
n(n=2)% n—1"(n-2)42(n-1)(n=2), (n=1)"(n-2)

@ . ..
Whence R-ﬁuof the degrees

(n-2)(n"=6), n{n—=1"=6, n{n-1)"-6;

this resultant will be denoted by Q (ﬂ = lhi@f‘) .

If we put
¥ =¥+ A+ po', x=ay'+Be, e=yx'+d,
then in the new system of coordinates (¢, ', ') the funda-
mental point P is the same as before, and only the two
other points D, I’ have assumed arbitrary new positions
in the tangent plane of the basis at £. The polynome
of the equation of the contact section, considered as ex-
pressed in terms of V', ', @ will have the same properties
as the before mentioned polynome, it will have therefore a
corresponding resultant Q'; and since &, " are respectively
replaced by Az + az' 4 y2", pz+ 82 + 8" and similarly
for the other coordinates, Q' will be in n:gud to each of
the series of constants A, a, v and u, 8, 6 of the degree
nin-1)'~6. But since y =0, y=0, @=0is a solution
of the new system, which implies ad — 8y = 0 without besides
baving the variable solution ' =0, x'-.(i' w=0 as a
necessary consequence, Q' must be divisible by a power of
ad ~ By, in such manner that the quotient may differ from
Q only by a trivial constant (that s a constant independent
of a, B, v, &\, u), we must thereforg have
Q' = (ad~ By)" "V 0,

since for AmpuwBmym0, a=8=1, Q' and O must
coincide. Suppose now df =pdww + gdr + rdy + sde, and
consequently (since the equation f = 0 is satisti

potqr+ry + 83 =0,
whence among other relations
(pe+gx) (pw + ry) = grzy — psws,
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And writing

d d . { d
D’nq_d;—l;a, Dmgy =r ;

the points IV, D" will be on the tangent plane. Putting
moreover

o PTX - s’ rey’ + e’ pry + yqe'

mo N 77 WS o Y . B i b
=y pw+qx X pw + qx y @ pw+ qx
we have

S (wy +9x, ¥ - px, y¥ +sw, ¥ - re)
=f(oy' +ry, ay' —zo', y¥' —px, 2¥'+q0'),

i . Ll V|
pw+tqz

a8 before, under the supposition f=0. But since as well
Q' as Q are integral functions of w, x, y, z: p, ¢, 7y 8 Viz.
in regard to the first set of the degree (n—2)(n*— 6), and
in regard to the second set of the degree 2[n(n— 1)'—8],
it follows that putting for p, ¢, r, s the values of these quan-
tities considered as derivatives of the polynome f, we must
have identically

(20 + gz ™0 — (pro+ry)" "0 =V

where V is a rational and integral function of w, z, ¥, 2.
There is nothing from which it would appear that the system
J=0, pw 4+ qz=0, pw + ry =0, or what is the same thing
P =~ g = —ry = sz represents a curve and not a mere
system of disorete points, But since the curve

PU+qr=0, pw+ry=0
lies wholly in the surface V=0, and no part of the curve

lies in the surface f=0, the curve must lie wholly in the
surface V=0, and the form of the identical equation shews
that the curve in question enters as an ‘n (n = 1)* = 6 -tuple
curve of the surface V=0, Now [ believe that whenever
& complete curve is represented by the equations k = 0, [ =0
every surface panings through the curve may be representes
by an equation k¢ + lu = 0. From such an axiom it follows
at, for the present case, we must have identically

Ve (pto 4 g™ T ~ (o + ry)"™"1,

where 7) 7" are rational and integral functions. And when
this is once granted, it follows from known and strictly de-
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monstrated theorems relating to the divisibility of rational
functions, that we must have identically

Q={pw+qx) “'R 4+ TV,

where R is a rational and integral function. |

The required curve of contact was at first contained in
the system © =0, f=0, then after the separation of ex-
traneous curves in the system Q=0, f=0. This last
siztem in virtue of the relation just obtained breaks up into
the multiple system pw+gr=0, f=0, and the u_uiq';;le
system R=0, f=0. The former on account of its arbi-
trariness cannot contain the required curve, which must
therefore be contained in the latter system. But R being
obviously of the degree (n—2)(n’—n"+n—12), the degree
of the curve of contact is at most n (n—2) (n' —n"+ n—12).
We proceed to shew that the curve is actually of this degree ;
from which it will follow that it is a complete curve, that is
that a surface /7 = 0 passes through the curve of contact and
intersects the basis only in this curve and in no other curve,
if at least the axiom relied upon was not deceptive.

Imagine a cone baving for its vertex a point D, circum-
scribed about the surface, and let it be required to find for
this cone the degree g, the class k, the number of double
sides d, of cunpigﬁe (stationary) sides r, of double tangent
planes ¢, and of stationary tangent planes w. It is clear
that it 18 only necessary to know three of these six num-
bers in order to determine the others by means of the same
three relations which apply to plane curves, viz.

n—r=3(k—g), glg=1)=k+2d+3r, k(k—=1)=g+2+3w.

(sec Steiner's Memoir on the subject, Crelle, t. xlvii,, and
Liouville, t. xviii. p. 309; also Salmon'’s Treatise on the
Higher Plane Curves, p. 91). The curve along which the
cone touches the surface is defined by the system f=0, Df=0;
the tangent (when & denotes the symbol of one of its points)
by Af=0, DAf=0. Comparing this with the system
& =0, §f=0, which determines the two tangents at the
double point of the contact section; it is casy to see that
the tangent A of the curve of contact of the surface and
circumscribed cone, and the generating line PD of the cone
are harmonically related to the two tangents of the contact
section at the double point.* Each generating line therefore

¢ This also follows easily from the more general theorem: If three
surfaces touch at the same point, the pairs of tangents of the three
contact sections at the point in question form a pencil in involution.
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of the cone which coincides with one of the two tangents at
the double point of the contact section will be also a tangent
to the curve of contact of the surface with the circumscnbed
cone, and in particular when the point of contact of the tangent
plane is a cusp of the contact section, the tangent of the curve
of contact of the surface with the circumscribed cone coincides
with the cuspidal tangent of the contact section, so long as
the generating line of the cone has any other direction what-
ever. In the former case the cone has a cuspidal (stationary)

enerating line, in the latter a stationary tangent plane. For
the cuspidal or stationary generating line the conditions are
J=0, Df=0, IFf=0, and woiue therefore r=n(n—1) (n— 2).
For a cusp of the contact section of the basis it is necessary
that the system Af=0, A%/ =0 should have in reference to
the elements of A two coincident solutions, which may be
expressed by the evanescence of ¢f (the Hessian functional
determinant or Hessian). Consequently the stationary tan-

ent planes of the cone are given by the system f=0,

=0, Af=0, and therefore w=n(n—1) x4 (n—2). The

order g of the cone is the class of the section of the basis
by a plane through the vertex of the cone, so that g=n (n~1)
and the class % of the cone is the class of the basis, that ie
k=n(n-1)". We have already four of the requu
numbers, more than enough therefore to determine the two
others, We find

d=in(n-1)(n—-2)(n-8),
tmin(n=1)(n=2) (n'=n"+n-12).

1 stop to consider this last number ¢. Since this represents
the number of planes passing through a given point D and
tonchi::f the basis in two distinct points, 1t is nmumll{, the
class of the doubly circumscribed dnmfnpublu of the basis.
,E‘“ the curve of contact is intersected by the polar surface
Df=0, obviously only in the pairs of points of contact of
the planes through D; consequently the number of these
points of intersection is 2¢ and the degree of the curve of
contact 1s
2¢ _
s =n(n=9) (¢~ n—12),

which was the number above obtained as the maximum limit
of thg tlegre_e of the curve. I am indebted to Dr. Steiner
for this process for determining the clasa of the doubly cir-
cumscribed developable, The determination of the order of
the circumscribed developable appears to me a very inter-
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esting problem. If it were solved, as to which I at present
know nothing, we should be in a condition to derive, by
means of it, the number of the triple tangent planes of the
surface, and gencrally an explanation of all the singularities
which a general (as regards order) surface presents in respect
to its class.

The order in question would be determined if it could
be found, how often, for example, the right line w=0, 2=0
is intersected by a generating line of the developable. If we
retain the symbols

d d , . d _d
the generating line in question will pass through the points
ngd . ksor the st:aond double mt(bmiu P) me
contact section we must have y=0. The former system,
the resultant of which was Q, tien casily reduces itself to
the following

i -

IR At o PN " =
ey« DY=o,
S 72y o D=0
& 1.2.38...6 ' .
" 1 R ,

D * (] D'Dﬂ_‘f‘ 0'

w 1.2.8...0

to which is to be added f=0. From these four equations
the four unknown quantities ¥ : @, w:z:y: s are to bo
determined and the extrancous solutions rejected. It is of
course intended that p, ¢, r, s, which denote the first derived
functions of f, ahuuldp be replaced by their values. In order
to give an idea how numerous the extraneous solutions ma
be, I may mention that for n=3, the system reduces itself
to f=0, D=0, D=0, and that all the 90 solutions
are extraneous, inasmuch as 18 solutions belong to the system
(to be taken six times over) w=0, 2=0, f=0, and 72 to
the system (to be taken six times over) r=0, 8=0, f=0.

In order to exhaust the singular tangent planes of a
general (as regard order) surface, we must imagine the planes
which touch 1Ee basis along the curve f=0, ¥f=0, conse-
quently in curves having a cusp at the point of contact, such
planes, considered in respect to class, have two coincident
Paimn of contact, and are therefore singular tangent planes.
The system of the planes in question generate what I call the
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osculating circumscribed developable, the curve in question
may be called the osculation curve; it separates the region
of the basis where the measure of curvature is negative
(consequently where ¢/ is positive and the two tangents at
the double point of the contact section are real) from the
region where the measure of curvature is positive. There
are certain determinate points of the basis where the oscu-
lation curve and the curve of contact of the doubly cir-
cumscribed developable, 1° simply intersect, 2° touch. A plane
which touches the basis at a point of the former kind inter-
sects the basis in a curve having a double point and also
a cusp; a plane touching the basis at a point of the latter
kind cuts the basis in a curve having at the point of contact
a self-touching double point, that is, a double d[mmt where
the two branches touch; the tangent at such double point
coincides with that of the osculation curve; and if in the
neighbourhood of such a point we follow the motion of the
double tangent plane, we find that upon one side of the
curve of osculation the two points of contact of the plane are
real points indefinitely near to each other, and on the other
gide the plane is still real but the two points of contact are
lma&ifnary and conjugate to each other. 7

ith respect to these singular developables and planes
I assume the numerical relations following:

1. a=4n(n—1)(n-2) Sn’-—-n'+ n~- 12) the class of the
dn&:bly circumseribed developable, 4 the (still unknown)
order.,

2, b=4n(n—1)(n~2) the class of the osculating cir-
cumscribed developable = 2n(n - 2) (3n — 4) its order.

l 3. x the (ﬂilnuknown) number of the triple tangent
pianes. S

4°. A=4n(n~2)(n ~8) (n* + 8n ~ 16) the number of planes
touching the surface in a curve having a double point and
also a cusp. -

5. w=2n (n~2)(11n - 24) the number of planes touching
the srface in a curve having a self-touching double point.

The class of the surface is k=n(n~1)" If the surface
wose asenﬂfﬂ (as regards class) the order would be & (k—1)%
The difference & (k~ 1)*~n is to be accounted for by means
of the singular developables and tangent planes. The doubly
circumscribed developable in itself (abstracting the tangent
planes of a higher singularity included in it) gimiuiahna the
class of the '“ﬂ:ﬁ% by ak+ 24, the osculating circumseribed
developable (with the like abstraction) diminishes the class
by 20k + 8B, each triple tangent plane (abstracting the three
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sheets of the developable to which it is common) diminishes
the class by 3, each tangent plane cuuinE the surface in
a curve having a double point and cusp by 4, and lastly
each tangent plane cutting the surface in a curve baving
a self-touching double point by 6. We have thus

(a+2b)k+24 +3B+3c+4N+6p=4k (k- 1) —n,

which gives between the still unknown numbers 4 and « the
following relation:

24 4 3x=4n(n-2)(n"—45"+Tn"—45n"+ 181"~ 115n"+ 508n-912).
For n =38 we have
a=27, =30, B=24, A=0, =54, k=12

But as a curve of the third order cannot have two double

ints without breaking up into a conic and a right line, it
18 clear that the doubly circumscribed developable of a surface
of the third degree can consist only of planes passing through
fixed lines upon the basis, and that since the class 18 a =27,
there are upon the basis 27 such lines which play the part
of the developable in question. But as these Yinea are not
in general intersected by an arbitrary line, we must have
A =0 for the degree of this degenerate developable and the
formula gives x =45 as the number of the triple tangent
planes, which it is clear meet the basis in three right lines,
a pumber which may be obtained by other considerations.

Remark by the Translator. The investigations contained
in the present portion of Prof. Schlifli's Memoir, with respect
to the general theory of algebraical surfaces, are similar in
character to those of Mr. &ﬁmn, and several of the mtho_r’s
results have been already given in Mr. Salmon's Memoirs
in the Journal, but the theory is here carried a few steps
further than in the memoirs just referred to; and the know-
lad%hmh I bave of Mr. Salmon’s still unpublished Memoir
on Reciprocal Surfaces, in which the whole subject is con-
sidered in a more complete manner (and in purticu"n formulm
are given leading to the determination of the two numbers
A and «) was clearly not a reason for delaying the publi-
cation of Prof. Sch‘lylﬂi'I interesting Memoir, which was
kindly sent by him for insertion in the Journal.

(To b Continued.)

YOL. 1L F
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AN ATTEMPT TO DETERMINE THE TWENTY-SEVEN
LINES UPON A SURFACE OF THE THIRD ORDER,
AND TO DIVIDE SUCH SURFACES INTO SPECIES
IN REFERENCE TO THE REALITY OF THE LINES
UPON THE SURFACE.

By Da. Scuririi, Professor of Mathematics at the University of Bern.
Translated by A. CavLEY.

(Continued from p. 68).

[ IMAGINE to myself & homogeneous equation of the third
order in the four point coordinates w, , y, =, where all the
twenty coefficients have any values whatever. From this
may be calculated the function denoted above by R, which
in the present case is a function of the degree 9. The
surface J7 =0 will then meet the given basis surface of the
third order f=0, in the twenty-seven lines of this surface.
If therefore the equations f=0, R =0 are combined with
any two linear equations

A= aw + bz oy - das =0, lwae+by+de +d'w =20,
it must be demonstrable that the resultant of the four
fanctions f, B, I, I can be (in respect to the indeterminate
o Tiotons'of the'Tinear factions £, 1) decomposed into twenty-
seven factors of the form
_m*“rﬂb“l"'?“’v dl“"
| aa’ + B + 4, d' |

where the constants &, 8,y, o, &, v satify the condition
oo + BF + vy = 0. ;’hﬂ "lign there will pass through the
line corresponding to any such factor, the four planes

o — By +a's w0,

— w0 4-ay + Fow,

Pro— ax + 'z =0,

g iy 0,
 'Buppose that one line of the given basis surface f=0
is known: and let the system of coordinates be transformed
| in such manner that two fundamental planos s, ¢, pass through
~ the line in guestion. The equation of the surface will not
. contain any part not divisible by # or ¢, and it can therefore
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be reduced to the iomla, 8| =0, where 5 and T denote

polynomes of the second order. The basis surface contains
therefore all the conics represemted by the two equations
8+ M=0, 8+AT =0, where X is an arbitrary constant. But
A can be so disposed of that the conic may break up into
a pair of lines: the condition for this is, in regard to X, of
the fifth order; consequently, throu each line of the basis
there pass five planes, each of which intersects the basis in
the three sides of a triangle, and the number of such planes
is ?_%i =45. Suppose that A, g are two different constants,
satisfying the condition question: the equation of the basis
can then be brought umder the form | s+2Af, S+AT|=0,
l s4put, S4+puT

4y U‘:G. Here
| @y X |
U X are polynomes belonging to surfaces of the second
o;der, Wh'iczo L? mpecliveg’-mtgonchcd by the planes u, .
If p 1s the polynome of any other plane ‘which touches both
of the surfaces L, X, then there exists & constant ‘& for
which U+ apu breaks up into two factors, and in like manner
a constant 8 for which X+ gpu breaks up into two factors.
The plane p belongs to & < evelopable of the fourth class,
and has as such a single motion, Le. its equation contains
a single arbitrary parameter. We may therefore impose
another condition, and write a= 8. Replace ap by the single
letter p, and take D, A as symbols of the points in which
the surfaces U, X are touched by the planes u, 2 respectively.
Since then, each of the polynomes U-+ pu, X + pe breaks up
into factors, it is clear that the equations

D(U*FFH) =0, A(X‘PF!!) = ()

will be satisfied identically. But obviously, D U= ax, AX = b,
where a and b are mnutmu‘lwd Du=0, Az=0. The fore-
going equations become t erefore a +Dp=0, b+0p=0,
whence | @, Dp | =0, or if we please  Du, uDp rﬂ,(theh’t-
hand side divisible by ux) an equation which 18 komogeneous
and linear in respect to the coefficients of p; that is, there
exists a fixed point mm}Fh which the unngy moveable

plane p always pa ‘he problem has therefore four
Ealuﬁogz. An{l' S we soloct at pleasure one of the four

which may be denoted more simply by




glym  p which satisfy the required eondthmln& write
.g.p...-r,., 1+Fﬂw,theqm&iun of the basis becomes

w -y | =muvw 4 rys=0.

@ vw
The possibility of such & transformation might have bem
priori, since the six linear P"lfm . u, &c., contain
18 ratios of coefficients, to which is to be added s constant
Gt n e o 19 Bovetls Lonstaats, which b ety
are | | 19 disposable constauts, winch 18 Yy
thomhcdm&iﬁmwhnﬁnﬁed.h'Wemyaﬂm
rihedral, and say that in the equation wow+zys =0, the
is referred to & pair of tribedrals. :
Ehhmydywmemnwwdtogethubytwom-
st linear bomogeneous equations. We may mal-
tiply one of these by an arbitrary factor, and add it to the
poond, and the relation so obtained will of course be satis-
fied. Let such a relation bo

Au+ Bv+ Cw + Dz + Ey + Fa =0,

‘é

Au (Bv 4+ Dz) (Ow + D) + Dz (Au + Ey) (Au + Fs)

consequently, that if ABC = DEF, the function on the left-

hand side ily’n pew expression for ‘the polynome of the basis.

The equation ABCw DEF is, in regard to the arbitrary

constant contained implicitly i the coefficients, of the de-

gree 8, and gives therefore 3 solutions, which may be thus
autbotewtdetoy+fem0, abe = def

i utboddwsde +"y +fluﬂ' a'bcd = d'a:f,

aui- o+ et 'z 4y 4+ fam0, oV =dES

e mmzmﬁmnmwmmw

au (bo -+ dar) (o0 + die) + dio (am + ay) (o +fs) = 0.

The original tribedral pair uvee +mys =0, gives immediat
:hto’lim’ w.mn?bum "i"', t ﬂuw
(=0, 2m0) by wa. We have besides, 18 systems such
M (outdem0, bvtoym0, m+fl-;;,’ where the third
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equation is always a consequence of the two others; these

systems represent the other 18 lines, which may be com-
prhadinthofoﬂawingtwonhw d

menrn | et s

through uz, vy, ws pass I, T, T

“ wyer,er 4 mwmim|
“ wsoz,wy 4 woa)w

 through wz, es, wy pass p, ' p" |

“ wsvywe 4 ogqq, ¢

“ wyozes 4 orr, |
Two linuwhintl:mhlif:fto motbc:ngndemenhmdo
pot intersect, w are ei es represented by the
mm&ﬂ«m sccented, or b Memtlettonbyﬁmi-
larly accented; but they intersect when letters and sccents
are both different. And two lines belonging to different
nchemeu,h:tenectvbenthamnt:mlﬂnnmn,mddo
pot intersect when the accents are different.
‘Of the 45 triangle planes, 6 form the original trihedral
g;ir.ﬂ more are lh:aprwnled by d«:;nltionl;lmfhua&:dzmﬂ.
¢ represeat Phno au +dr=0, by (wr » plane
dut+dz=0, lxo(n@) , and so in similar cases. ’lﬁe following
scheme shews the three lines contained in each plaue.
w, b p|om m v | ez, m,g
wy ey b oglwy,mp
us, %, ¢ | V5, %, p ‘“1_11"
and similarly with one or two accents. Finally the 12 remain-
ing es are 6 planes such as s'n", and 6 planes such as pg'r”
in the representation of which the sccents ma be omitt
since the permutation of the letters is alone ieat. Tho

last mentioned planes admit of no ve ssatidant §
sentation, The plane (Imn) for u::;glo'amm 'E:
forms of its equation the following, e

%ﬁi (o + dx) ..’Zg.!i’(h +ey)=0.

Any two trian which have no line in commonm,
ugmm.mﬂ’m:mm-mm.m
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“problem to reduce the equation of the ‘baﬁn l_p‘tha form
wvio +zyz =0, is of the dogree 120, FEach trihedral pair
gives immediately only nine lines. [t is always posmble
to place together three trihedral pairs to give all the twenty-
seven lines; and one pair determines b itsglf the other two
pairs. There are thus jin all 40 su triads of trihedral
pairs, the following is a scheme of such triads,

1 triad uvw 4 rys,

(Imn)‘(mn[}. (nlm) 4 (Inm) (nml) (mln),

(par) (arp) (rpg) + (pr) (rap) (ar7),
27 triads such as
" () (wr) + x (wy) (us),
(vy) (1ea)" (prg) + (vy)" (w2} (pgr)s
(v2) (1oy)" (Inm) + (ve)" (10’ (Imm),
‘12 triads such a» ‘
u (lmm) ( prg) + (uz) (uy)' (uz)",
v (Alm) (rgp) + (vx) (vy)" (v2)’)
w (mal) (qpr) + (wa) (ey) ()",
Choosing from each pair of any triad a single tfihedral,
we obtain nine planes which infersect the bams in all the
27 lines. The polynome of the ninth e above repre-
sented by I, can therefore in 320 ways be combined with
the polynome f of the basis, 5o as to bresk up into linear
factors. An easier survey of the 27 lines of the basis f may
be arrived at as follows. We have
2 (uvw + ays)= | 0wz |=0,
y 0w
. w g0
this equation by linear combinations of the lines and columns
may be exhibited in the more general form
Ty by =0,
o,
‘ L
whiere all the élemeits of the determinant are linear fanctions
of ‘u, v, 0, 2, y, 2. Heénce every poitit detcrmined by a
system of equations such as '
Puﬂ'-'i'ﬂl'i"]ﬁﬂﬂ, pPoardfaiyt=o, pmar 484y t=0,

e,
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will lie on the basis, and conversely the ratios a: 8: v
may be determined for a given point of the basis. But if
the condition is imposed that the polynomes p, p', p” shall be
connected by an identical equation, such as p + «p' +x'p =0,
in other words, that the three planes shﬁ intersect not in
a point but in a line, we arrive at the condition that all
the determinants of a rectangular matrix with three hori-
zontal and three vertical lines, the elements of which are
all linear homo%eneous functions of a, B, v, vanish. It is
then clear that this problem has six solutions. If we assume
for example that «p + x'p'+ «'p" =0 is an identical equation,
the equation of the basis may be exhibited in the form

| 0, wsx's'+x's, wt+ £t 4+x"t" =0,
| 7 _" y 4 |

which shows that each line (p =0, p'=0, p" = 0) corresponds
to'a line (Zxr=0, Zxs =0, Tut =0 which it does not intersect.
But if a, B8, y belong to a different solution, and the cor-
responding polynomes are denoted by ¢, ¢, ¢", then We have
} i 0

'Yy Mg ¥
"y ¥y O

for the equation of the basis, and it is clear that now the
two lines (2xg=0, ¢ =0) and (Exg=0, Zxs=0) intersect,
since the systems have in common the equation Zxg=0,
Each of the six lines represented hdv a system such as
(p=0, p'=0, p"=0) intersects all the five non-corresponding
Tlines given by a system such ay (Zar =0, Zxs=0, Zxt=0)
and only the two corresponding lines do not ‘intetsect. 1 eall
such ‘group of 12 lines of the basis a “ double-six.” It is
clear that no two lines belonging to the same six intérsect.
The number of all the double-sixes is 86. For since each
line is intersected by 10 other lines, there remain 16 lines by
which it is not intersected. There are therefore ?-3;-9 =216

irs of lines which do not intersect. Throtigh one of the
M'ofmeh a pair pass five lines which do not intersect
the other line of the pair; this other line and the five lines
form together a six, and these compl ly determine the
other six of the double-six. But of such pairs of corte-
sponding lines s the first-mentioned pair there are in the

| Zxg, Zxs, Zxt




116 On the Twoenty-Beven Lines upon

double-six only 6; consequently ﬂf-ss is the number of

the doublo-sixes.
If now we start from the equation
0, uy @ | =0,
5 ov
jw, 5, 0

wo have at once three solutions of tlu!mblem, to make

the + %o, aw+ Ss ndent on each
T A, T, e T 55

the other three are obtained as follows : Suppose tha
s(ﬂ~+w)+-'(¢y+w)+c”(u+ﬂ-)-°
Aw+ Bo4Cw+ Dz + Ey+ Fam0

the general identical relation, where 4, &c. are to be con-
sidered as lincar fnmm o!slmgh disposable quantity,
We must therefore write

A"‘Bl Bumay, Cuxe, D=wxy E=xa, F==i"B,

give ABC= DEF. This cquation sdmits, as we know
Myofihmwluhm Andpmvmgthofom&rn#-
hhonl,“thmuﬂvestlhedmu&ax

ﬁﬁ:_y,kh”)'
Y w5, wr, m, W, A

where no two lines of the same horizontal row and no two
&ﬂﬂ&ammmwﬂwﬁ,bﬂt sny two lines
otherwise selected do intermect,

| 'md‘m&nhh-dxuwmu,uihudy
mﬁ:ﬂaw y of the 27 lines and 45 plaves of

(“M %y “ﬁ ay a, a,

~ the two intersecting li bbdmgm triangle which
-3 by lﬁ ?:tﬁ;‘d side by ¢, lThu lhwndo
G

forms with Irimglowhiebl 2. W
have thus fifteen ‘u uuholwhidl mbyml .
four lines a, b, the of which tga

of numbers forming the suffix of the c. An%nnymop:n:
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the suffixes of which bave & number in common, do not
intersect ; but two c’s, the suffixes of which have no number
mchcommo n, do mmhch 'Iﬁ;mh‘ are consequently triangles
such as ¢, ¢, c, which ma represented by (12, 34, 56
where as well the numbers t{lfer se of each pau?; a1 :hm):
pairs inter se, may be permuted. We have therefore 30
grm:iflu such as 12, and 15 triangles such as (12, 34, 56),
in all 45. Finally there are 10 trihedral pairs such as

(12) (28) (81) + (13) (32) (21)

(45) (56) (84) + (46) (65) (54)
(14,25,36)(15,26,34)(16,24,35) + (14,26, 35)(186,25,84)(15,24,36)
and 30 trihedral pairs such as

(85) (46) (12, 36, 45) + (36) (45) (12, 35, 46)

(51) (62) (18, 25, 84) + (52) (61) (13, 26, 84)

(18) (24) (14, 28, 56) + (14) (28) (13, 24, 56)
The double-sixes give rise to éhe remark kt:ﬂ there is here
exposed to view an apparcen very clementary theorem
which may be thus m.ﬂ;iated y “ Drawing at pleasure five
lines a, b, ¢, d, ¢ which mect a line F',thmm;m four of the
e lijmabecin})mfmgg’ ‘#fmfnm oot Gis 29}

t A, B, C, D, E are the other li es intersecting (3, ¢, 4, ¢),
’a a) d b), (e, 0y b, ¢}, and (a, &, ¢, d) respectively.

: c%:abslb:'g,.k (;nlt - tf;mb’fomli;u, d this lin
be another line f intersecting t! four lines, and ine
will of itself iné:mmmﬁninglmnE; i.e. there will
be a line f intersecting the five lines 4, B, C, D, E” Is

for this elementary theorem, a demonstration more
simple than the one derived from the theory of cubic forms?

_ the equation of the cubic surface referred to a real
-yumofmozmn' to axes, has all its coefficients real, it is
easy to sce that the surface will be real. The uestion how-

45 énu ,
be

ever arises, how many of the 27 lines and may be

and I content myself in giving s mere _ &,m
into which the genersl surface of the third order divid
iteelf in regard to the reslity of the 27 lines. There are
only the five species following:
‘A. All the 27 lines and 45 planes aro real.
B. 15 lines and 15 plancs are real. The twelve ims
i fam-dmhlo-dx,whmmhlimdtbomu

to the corresponding aud therefore not inter-

a‘ -

nary lines
is con
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lines bave a real point. Any two pairs of corresponding
imaginary lines are intersected by a real line; and as man
ways.as the double-six can be divided nto tfmce two suc
M in 8 WMAnY WaYs do the CﬂNWBMg real lines fom
s triangle, viz. there are fiftcen real triangles. |

C. 7 lines and 5 planes are real: namely, thmugh:‘ a
real line there pasa 5 real planes, but of these thme only
contain real triangles, in each of the other two the triangle
consists of the original real line and two imaginary lines
meeting in a real point. .

D. 3 lines and 13 planes arc real: namely, there 18 one
real triwlPle, and through each side there pass (besides.the
plane of the triangle) 4 real planes. .

E. 3 lines :::g 7 planes are real: nmel& there 1s a real
triangle, and through each side there pass (besides the plane
of the triangle) 2 real planes. . U8

With respect to the reality or non-reality of the six linear
polynomes in the expression wrio + zys, which is equivalent
to a given cubic polynome with real coefficients, the follow-
ing 18 cascs have to be distingnished. I call them forms
of the tribedral pair wvw 4 wyz = 0, and 1 shew in the follow-
ing enumeration to which species of cubie surface each form
’be ng;i : instead of linear polynome the word plane may

1°. All the six planes of the trihedral pair are real. This
form oceurs only in the species A and B, |

2°. u and @, v and y, w and 2 are conjugate to each other;
that is, the two trihedrals of the pair are imaginary and con-
jugate. In Band O, ‘ ,

8. w, v, w0, @ are real, y and 2 conjugate. In D and E:

4'. uand = are m}v and w, and y and # conjugate to
etegothumdhﬂ ”‘;lu], s € b

: . w and @ are the four others imaginary, but no
two of them conjugate: but v and w have their :g&l line in

@, and y and's real line in w. (Every imaginary plane

contains of course a real line). In Band C.

m&';{ u and n}m rgl,. thg fomthm imaginary and ne
them conjugate: and w alome intersects ¥, # in real
lines. In C and E | p »

7. u and « are real, the four others imaginary and not
Zz?n te. Neither w nor » have a real triangle. In D

8% u and 2 are conjug \ the four others ars imoginary

‘and mot conjugate; v and ve a real point in common
~and 0 hﬂ'ﬁiﬂ g‘ am;i s. In{‘} and K e mmon,

4‘
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9°. u is real, the five other planes are imaginary and not
conjugate, u intersects x in a real line, and y, z in conjugate
lines. And y alone has with each of the planes ¢ and w, a
real point in common. In £

10°. All the six planes are imaginary and not conjugate ;
% and z have in common a real point, v and y a real line,
and v and z a real line, In C.

11°. All the six planes are imagipary, and not conjugate,
each plane of the one trihedral has in common with each
plane of the other trihedral a real point. In D.

12°. All the six planes are imaginary and not conjugate ;
» has in common with z a real point, and also with y, an
also with z: morcover » has a real point in common with v,
and alsu with w.

18°. All the six plancs are imaginary and not conjugate ;
u has a real point in common with z, and so also v with
y, and w with z. In E.

If in any one of these thirteen forms the particular com-
plete character of each of the six linear polynomes 18 repre-
sented explicitly, and then the transformation is undertaken
of this form into another triledral pair, it often happens that
a root of the cubic equation which has to be solved for this
purpose can be rationally represented by the constants of the
?orm,withuut the necessity of extracting s cube root, Two
trihedral pair forms thus easily transformable the one into
the other may be termed eguivalent ; when the one of them
presents itself in any two species of the surface, the other
also presents itself in the same two species, It is only the
two other roots of the abave mentioned cubic equation
ABC = DEF which decide, according as they happen to be
real or imaginary, to which of the two species the surface
belongs, and they give nse to a transformation complicated
with a square root; trihedral pairs thus transformed into
each other, on account of the possible transition from one
species into a difforent one, I ca wu-«gu‘mlmt ; the more
so that the discussion of the one form does not render une
necessary that of the other. In this sense

The forms 2°, 5° are equivalent and occur in B and C

w468 o “ C and

“ R “ “ D and

114 9"’ lg" 13' i “ ‘E,
while, on the contrary, the following forms are each of them
inolated, viz. 1* in 4 and B, 10" in C, and 11° in D.

The forms of the triads of trihedral pairs arrange them-
selves as follows:

PR

Lo i



120 The Relation between the distances of a

A has 40 trads (1, 1, l;

B has 10 trinds (1, , 2, 2) and 30 triads (5, 5, 5).

C has 4 triads sa4),19m.da(&aa),md24 triads
(6, 10, 10).

D bas 16 trinds (3, 11, 11) and 24 triads (7, 7, 7).
E has 2 triads {4 4 4), 4 triads (3, 13, 13), 6 triads
(7, 8, 8), 12 triads (6, 12, 12), and 16 triads (9, 9, 9).

n conclosion I remark that the double-sixes plnys
mth&myof&enoﬂudnmhcs:frfmflcﬂl n;de“
say point (w0 s) of an ace f(w, z, =0
fw’vheh w f ’fi Lhded all nlm of the four e eme;nt;
dihedttemmumryumbmd proper node” a point
at which the cone of the second order represented by Jf=0
does not break up into a pair of planes. If & surface of the
lﬂordar.f-{)huup:mmde(m,m,y,n),lhenthemx

lines pass lhl‘ﬂ# such node and represented by the
E"‘ﬂ fu-(] form a double-six, in which each
“’“ Wl"{ (non-intersecting) lines of the two sixes

NOTE ON THE RELATION BETWEEN THE DISTANCES
OF A STRAIGHT LINE FROM THREE GIVEN POINTS.

mu.ummammmmﬂmmmwu

X Salmon's Higher Plane Curves, Art. 1X., 10, an in-
I wtigation is given of the mhuon exmmgp woen the
agential coordinates of a lme,tbﬂu,botwmm
distances from three arbitraril
‘ mmﬂhﬁuvmvo!utmﬁthohmmmof
Qﬁhﬁnmﬁnnu,m rable to place the
m:touppl lptmfdfnt::?ﬂltmin e
nahonnot
depuMmmy’oMm !
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Let A, B, C be the three points of reference, PQ any straight
line, draw AD, BE, CF, severslly perpendicular to FQ.
Then, in accordance with the convention with respect to the
+use of the negative sign, if 41) be considered positive, BE
and CF, ly ingewbolly without the angles 4 5C, ACB respec-
tively, will negative. Let then AD =a, BE= - 8,
CF=—+. Through A draw E'F parallel to PQ, produce
BE, CF to meet E'F in E', F respectively, then

BE' = - (B+a), CF =~ (y+a).

Bisect the angle BAC by the straight line 40, and let
OAD = 4.

Let BC=a, CA=b, AB=c.

,‘ B+a BE . - —
Then — 242 = 3= = inBAE = ca BAD eu(’,-;-a).
+ A

Similarly ~TEE (5 -6),
therefore — (ﬁ:a+71a) cosd,
2008 -
1 (Bia_aq+a\ . o
' A( ¢ b ) -
Qnm-?

therefore, adding squarcs and simplifying,

1 3 4+ a)* +a)') 2co8d(B+a)(yta
lin‘z{(ﬁa' ! +(1P‘l}- sin' A = %nf.( )-l;
therefore

B (B+a)' 4 o (y+ a) — 2bccos 4 (8 + a) (y + a) = b sin’4,
or ' (B+a)' +¢ (v+ @) — (' + & —a") (B +a) (v +a) = 4K,
K denoting the area of the triangle ABC; s result. which
may be put into the symmetrical form,
A+ VB Y~ (P4l =d) By~ (" +a'-F)ya

—(a'+8'— ) af = 4K,

which is substantially identical with that given by Mr.
Balmon, in the articlo above referred to.

YOL. 1L K



