Göttingen Collection of Mathematical Models and Instruments

Boy's surface of degree 6

Model 945

Constructor:Category:
G. Franzoni

Description

Boy's surface of degree 6, Francois Apéry, 1986.
0=2S03+2(8-9z)S02+2z(z(2-3z)(4-3z)+B-A)S0+8z2(1-z)B   with
S0=3(x2+y2+z2)-4z,
A=3(√3)x(x2-3y2), B=3(√3)y(3x3-y2).

Additions

Boy's surface is an immersion of the real projective plane in 3-space found by W. Boy in 1901. This was the topic of his dissertation under D. Hilbert (who has asked him to prove the inexistence of such immersions).

In 1984, F. Apéry proved that it is also an algebraic surface of degree 6, given by the equations \begin{gather*} \begin{split} 0 &= 2S_0^3 + z(8-9z)S_0^2\\ +& 2z(z(2-3z)(4-3z)+B-A)S_0 + 8z^2(1-z)B\\ S_0 &= 3(x^2+y^2+z^2)-4z, \\ A &= 3\sqrt3 x (x^2-3y^2),\quad B = 3\sqrt3 y (3x^2-y^2). \end{split} \end{gather*}

Showcase of this model is Case number 28

References

Separataband im Mathematischen Institut, M40: Dissertation Boy,W. p. 1-61.

Apéry, Francois(1986). La surface de Boy. Adv. in Math.61, no.3, p. 185-266.