Models of rubric: Differential Equations Model 268 Real part surface with edge of regression Model 279 The non-integrabel pfaffian problem ydx - xdy + k dz = 0 Model 283 Fresnel wave surface for optic uniaxial crystals Model 284 Fresnel wave surface for optic uniaxial crystals Model 285 Fresnel wave surface for optic biaxial crystals Model 286 Fresnel wave surface for optic biaxial crystals Model 287 Fresnel wave surface for optic biaxial crystals Model 289 Heat conduction in a stick; single source Model 290 Heat conduction in a stick; double source Model 291 Periodic heat conduction in a stick Model 317 6 spheres with the + and - regions of the easiest spherical functions Model 318 6 spheres with the + and - regions of Lamé products Model 321 Lissajous tuning fork curves. 18 stereo's with explanation Model 356 20 stereo's Lissajous curves Model 843 Picked string (violin string) Model 844 Picked string (violin string) Model 846 Picked string Model 847 Vibrating string Model 850 Hammered string (Piano string) Model 851 Hammered string (Piano string) Model 852 Impulsion transversala d'une barre elastique appuyee aux extremites et heurtee Model 1020 Slide: Boundary value problem Model 1021 Slide: Boundary value problem Model 1022 Slide: Boundary value problem Model 1023 Slide: Boundary value problem Model 1024 Slide: Boundary value problem Model 1025 Slide: Boundary value problem Model 1026 Slide: Boundary value problem Model 1126 Slide: Mode of motion of the hammered string Model 1127 Slide: Mode of motion of the hammered string Model 1128 Slide: Picked strings Model 1129 Slide: Picked strings Model 1130 Slide: Hammered strings Model 1131 Slide: Hammered strings Model 1132 Slide: Bowed strings Model 1133 Slide: Bowed strings Model 1134 Slide: Bowed strings Model 1135 Slide: Hammered strings Model 1143 Slide: Singularities of a differential equation of 1. order Model 1144 Slide: Graphical integration of a differential equation Model 1145 Slide: Singularities of a differential equation of 1. order Model 1146 Slide: Singularities of a differential equation of 1. order Model 1766 Slide: Source functions of heat conduction Model 1767 Slide: Source functions of heat conduction, 1D Model 1768 Slide: Source functions of heat conduction, 2D Model 1769 Slide: Source functions of heat conduction, 3D Model 1843 Slide: The Bessel function Model 1844 Slide: The Bessel function Model 1845 Slide: Altitude chart of the Bessel function Model 1846 Slide: Relief of the Bessel function Model 1847 Slide: Partial derivative of the Bessel function Model 1848 Slide: Altitude chart of the Hankel function Model 1849 Slide: Relief of the Hankel function Model 1850 Slide: Relief of the Hankel function Model 1851 Slide: Altitude chart of the Hankel function Model 1852 Slide: Relief of the Hankel function Model 1854 Slide: Family of boundary-curves Model 1855 Slide: When have we to cumpute with the exceptional series? Model 1856 Slide: Bessel funcions of the order p=+-1/3 Model 1857 Slide: Sum and difference of two Bessel functions Model 1859 Slide: Relief of the function exp(i*cos(omega)) Model 1860 Slide: Relief of an exponential function Model 1863 Slide: The Lommel-Weber function Model 1864 Slide. Bessel function Model 1865 Slide: Bessel function against the plane p,x Model 1866 Slide: Bessel functions Model 1867 Slide: Bessel functions Model 1868 Slide: Bessel functions Model 1869 Slide: Bessel functions Model 1870 Slide: Zeros of Bessel functions Model 1871 Slide: Zeros of Bessel functions Model 1872 Slide: A function against the square of the half argument Model 1873 Slide: Zeros of Bessel functions Model 1875 Slide: Steepness at the zeros of Bessel functions of large order Model 1876 Slide: Extreme values of Bessel functions of larger order Model 1877 Slide: Position of the first function values for Bessel functions Model 1878 Slide: Bessel function x=p and x=p+1 Model 1879 Slide: Bessel functions of constant argument Model 1880 Slide: Bessel functions of constant argument Model 1881 Slide: Bessel functions of larger order than one Model 1882 Slide: The function Lambda(x) Model 1883 Slide: Bessel and Neumann function for x=p and x=p+1 Model 1884 Slide: Neumann function Model 1885 Slide: Neumann function Model 1886 Slide: Neumann function Model 1887 Slide: Hankel function H(1)(x) Model 1888 Slide: Zeros of the Neumann function Model 1889 Slide: Inversion of a function Model 1890 Slide: Inversion a function Model 1891 Slide: Inversion of a function Model 1892 Slide: Inversion of afunction Model 1893 Slide: Curves Model 1894 Slide: Bessel functions for pure imaginary argument Model 1895 Slide: Bessel functions for pure imaginary argument Model 1896 Slide: Bessel functions for fixed pure imaginary argument Model 1897 Slide: Bessel functions for fixed pure imaginary argument Model 1899 Slide: Hankel functions for pure imaginary argument Model 1901 Slide: Bessel function of order 0 Model 1902 Slide: Bessel function of order 0 Model 1903 Slide: Bessel function of order 1 Model 1904 Slide: Bessel function of order 1 Model 1905 Slide: Hankel function of order 0 Model 1906 Slide: Hankel function of order 0 Model 1909 Slide: H(1)(i1/2)=hi&eta Model 1910 Slide: H(1)(i1/2)=hi&eta Model 1911 Slide: The arrows (...) going out perpendicularly from the r-axis Model 1912 Slide: The arrows (...) going out perpendicularly from the r-axis Model 1913 Slide: J(r*sqrt(i))=b*i^beta Model 1914 Slide: J(r*sqrt(i))=b*i^beta Model 1915 Slide: J_0(r*sqrt(i))/J_1(r*sqrt(i)) Model 1916 Slide: H(1)_0(r*sqrt(i))/H(1)_1(r*sqrt(i)) Model 1917 Slide: The arrows (...) going out perpendicularly from the r-axis