A B C D E F G H J K L M Z Differential Geometry Show slides Behavior of curves, surfaces, and line congruences on the infintely small scale Model 163 E I 1-8 Model 164 E I 1-8 Model 165 E I 1-8 Model 166 E I 1-8 Model 167 E I 1-8 Model 168 E I 1-8 Model 169 E I 1-8 Model 170 E I 1-8 Model 171 E I 9-16 Model 172 E I 9-16 Model 173 E I 9-16 Model 174 E I 9-16 Model 175 E I 9-16 Model 176 E I 9-16 Model 177 E I 9-16 Model 178 E I 9-16 Model 179 E I 17-20 Model 180 E I 17-20 Model 181 E I 17-20 Model 214 E I 21 Model 215 E I 22 Model 280 E I 24-26 Model 281 E I 24-26 Model 282 E I 24-26 Model 468 E I 27 Lines of curvature, asymptotic lines, geodesic lines, parabolic curve Model 31 E II 22 Model 32 E II 23 Model 33 E II 24 Model 34 E II 25,26 Model 35 E II 27 Model 36 E II 28 Model 198 E II 1 Model 199 E II 2 Model 200 E II 3 Model 201 E II 4-15 Model 202 E II 4-15 Model 203 E II 4-15 Model 204 E II 4-15 Model 205 E II 4-15 Model 206 E II 4-15 Model 207 E II 4-15 Model 208 E II 4-15 Model 209 E II 4-15 Model 210 E II 4-15 Model 211 E II 16 Model 212 E II 17-18 Model 213 E II 17-18 Model 220 E II 19 Model 235 E II 20 Model 384 E II 4-15 Model 385 E II 4-15 Deformation theory Model 191 E III 1,2 Model 192 E III 1,2 Model 193 E III 3-4 Model 194 E III 3-4 Model 195 E III 5-7 Model 196 E III 5-7 Model 197 E III 5-7 Model 300 E III 9 Model 451 E III 11-16 Model 452 E III 11-16 Model 453 E III 11-16 Model 454 E III 11-16 Model 455 E III 11-16 Model 456 E III 11-16 Model 864 E III 10 Minimal surfaces Model 195 E IV 1-3 Model 196 E IV 1-3 Model 197 E IV 1-3 Model 236 E IV 4 Model 381 E IV 5 Model 382 E IV 6 Model 383 E IV 7 Model 414 E IV 15 Model 427 E IV 16 Model 442 E IV 17 Model 1042 E IV 8 Model 1043 E IV 9 Model 1044 E IV 10 Model 1045 E IV 11 Model 1046 E IV 12 Model 1047 E IV 13 Model 1048 E IV 14 Surfaces of constant Gauß or medial curvature Model 69 E V 10 Model 182 E V 1 Model 183 E V 2 Model 183 E V 2a Model 184 E V 3 Model 185 E V 4 Model 186 E V 5 Model 187 E V 6a Model 187 E V 6 Model 188 E V 7 Model 189 E V 8 Model 190 E V 9 Model 195 E V 11-13 Model 196 E V 11-13 Model 197 E V 11-13 Model 198 E V 14 Model 199 E V 15 Model 200 E V 16 Model 216 E V 17 Model 216 E V 9 Model 217 E V 18 Model 217 E V 4,5 Model 386 E V 21 Model 415 E V 19 Model 961 E V Helicoids, sliding surfaces, curves and surfaces of constant breadth Model 64 E VI 1 Model 65 E VI 2 Model 66 E VI 3 Model 67 E VI 4 Model 68 E VI 5 Model 68 E VI 1 Model 69 E VI 6 Model 70 E VI 7 Model 71 E VI 8 Model 151 E VI 9 Model 184 E VI 10 Model 191 E VI 11,12 Model 192 E VI 11,12 Model 221 E VI 13-25 Model 222 E VI 13-25 Model 223 E VI 13-25 Model 224 E VI 13-25 Model 225 E VI 13-25 Model 226 E VI 13-25 Model 228 E VI 13-25 Model 229 E VI 13-25 Model 230 E VI 13-25 Model 231 E VI 13-25 Model 232 E VI 13-25 Model 233 E VI 13-25 Model 234 E VI 13-25 Model 243 E VI 26 Model 243 E VI 8 Model 378 E VI 27 Model 379 E VI 28 Model 1006 E VI 29 Model 1007 E VI 30 Model 1008 E VI 31 Model 1009 E VI 32 Model 1010 E VI 33 Others Model 237 E XX 1 Model 238 E XX 1 Model 239 E XX 2 Model 240 E XX 2 Model 241 E XX 2 Model 242 E XX 2 Model 345 E XX 3 Model 413 E XX 26 Model 417 E XX 6 Model 418 E XX 7 Model 422 E XX 8 Model 462 E XX 25 Model 848 E XX 27 Model 1339 E XX 4 Model 1601 E XX 9 Model 1602 E XX 10 Model 1603 E XX 11 Model 1604 E XX 12 Model 1605 E XX 13 Model 1606 E XX 14 Model 1607 E XX 15 Model 1608 E XX 16 Model 1609 E XX 17 Model 1610 E XX 18 Model 1611 E XX 19 Model 1612 E XX 20 Model 1613 E XX 21 Model 1614 E XX 22 Model 1615 E XX 23 Model 1616 E XX 24